BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer

Niki Karachaliou¹, Jordi Codony-Servat², Cristina Teixido², Sara Pilotto³, Ana Drozdowskyj⁴, Carles Codony-Servat², Ana Gimenez-Capitan², Miguel Angel Molina-Vila², Jordi Bertran-Alamillo², Radj Gervais⁵, Bartomeu Massuti⁶, Teresa Moran⁷, Margarita Majem⁸, Enriqueta Felip⁹, Enric Carcereny⁷, Rosario Garcia-Campelo¹⁰, Santiago Viteri¹, Maria Gonzalez Cao¹, Daniela Morales-Espinosa¹, Alberto Verlicchi¹¹, Elisabetta Crisetti¹², Imane Chaib⁷, Mariacarmela Santarpia¹³ Jose Luis Ramirez⁷, Joaquim Bosch-Barrera¹⁴, Andres Felipe Cardona¹⁵, Filippo de Marinis¹⁶, Guillermo Lopez Vivanco¹⁷, Jose Miguel Sanchez¹⁸, Alain Vergnenegre¹⁹, Jose Javier Sanchez Hernandez²⁰, Isabella Sperduti²¹, Emilio Bria³, *Rafael Rosell^{1,2,7,22,23}

¹Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain; ²Pangaea Biotech, Barcelona, Spain; ³Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; ⁴Pivotal, Madrid, Spain; ⁵Centre François Baclesse, Caen, France; ⁶Hospital General de Alicante, Alicante, Spain; ⁷Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain; ⁸ Hospital de Sant Pau, Barcelona; ⁹Hospital Vall d'Hebron, Barcelona, Spain; 10 Complexo Hospitalario Universitario La Coruña, Spain; 11 Ospedale Santa Maria delle Croci, Ravenna, Italy; ¹² Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Italy: ¹³Medical Oncology Unit, Human Pathology Department, University of Messina, Italy; ¹⁴Catalan Institute of Oncology, Hospital Josep Trueta, Girona, Spain, ¹⁵ Clinical and Traslational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia; ¹⁶Direttore, Divisione di Oncologica Toracica, Istituto Europeo di Oncologia – IEO, Milano, Italy; ¹⁷Chief, Medical Oncology Service, Hospital de Cruces, Barakaldo, Vizcaya, Spain; ¹⁸Medical Oncology Service, Hospital de la Princesa, Madrid, Spain; ¹⁹Hôpital du Cluzeau, Limoges, France; ²⁰Unidad de Investigación en Salud Pública CIDICS-UANL, ²¹Biostatistics, Regina Elena National Cancer Institute, Rome, ²²Molecular Oncology Research (MORe) Foundation, Barcelona, Spain; ²³Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti

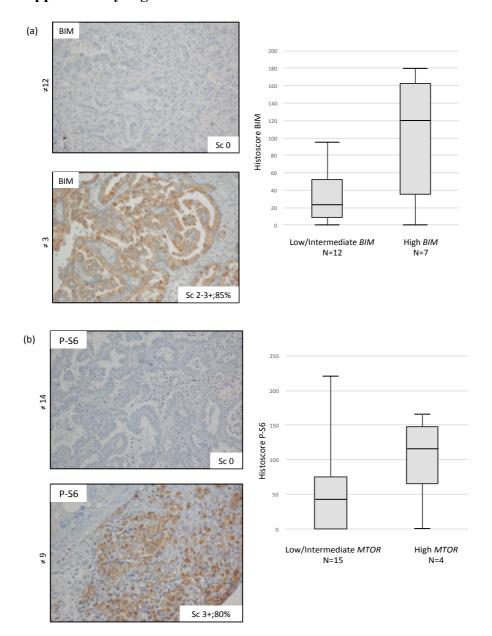
Supplementary Material

Supplementary Table 1. Patient characteristics of the 19 patients included in the

validation cohort

Clinical parameter	N(%)
Sex	
Female	14 (73.7)
Male	5 (26.3)
Age group	
<65 years	11 (77.9)
>= 65 years	8 (42.1)
Smoking status	
Never smoker	15 (78.9)
Former smoker	3 (15.8)
Current Smoker	1 (5.3)
ECOG PS	
0-1	12 (63.2)
2	7 (36.8)
Histologic Diagnosis	
Adenocarcinoma	19 (100.0)
Clinical Stage	· ·
IIIA	1 (5.3)
IIIB	2 (10.5)
IV	16 (84.2)
Bone metastasis	
Yes	9 (47.4)
No	10 (52.6)
Brain metastasis	
Yes	7 (36.8)
No	12 (63.2)
Other metastasis	
Yes	12 (63.2)
No	7 (36.8)
Type of EGFR mutation	
del19	12 (63.2)
L858R	7 (36.8)
Type of EGFR TKI	
Erlotinib	13 (68.4)
Gefitinib	5 (26.3)
Afatinib	1 (5.3)
Response	
Complete response	2 (10.5)
Partial response	10 (52.6)
Stable disease	7 (36.8)

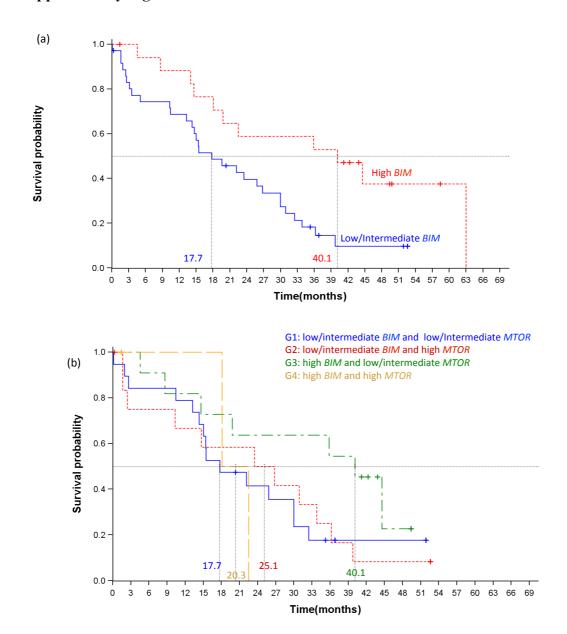
Supplementary Table 2: Univariate analyses of progression-free and overall survival in 57 patients from the EURTAC trial included in the present study.


	PFS		OS	
Variable	HR (95%CI)	P	HR (95%CI)	P
Gender	,			
Female	1.00	-	1.00	
Male	1.14 (0.60, 2.18)	.6859	1.20 (0.63, 2.28)	.5773
Smoking history				
Current smoker	1.00		1.00	
Never smoked	1.10 (0.33, 3.68)	.8737	0.39 (0.15, 1.05)	.1791
Former smoker	1.05 (0.30, 3.68)	.9391	0.46 (0.17, 1.31	.1472
ECOG performance				
status				
1,2	1.00		1.00	
0	0.67 (0.35, 1.27)	.2156	0.78 (0.41, 1.49)	.4554
Treatment				
Chemotherapy	1.00		1.00	
Erlotinib	0.48 (0.25, 0.93)	.0265	1.28 (0.69, 2.35)	.4321
Bone metastasis				
No	1.00		1.00	
Yes	1.50 (0.77, 2.92)	.2298	1.19 (0.60, 2.38)	.6178
Brain metastasis				
No	1.00		1.00	
Yes	2.31 (0.89, 5.97)	.0749	2.66 (1.10, 6.43)	.0293
Type of EGFR				
mutation				
del19	1.00		1.00	
L858R	0.69(0.36, 1.30)	.2467	0.87(0.46, 1.64)	.6659
BIM expression				
Low/intermediate	1.00		1.00	
High	0.40 (0.20, 0.80)	.0095	0.39 (0.19, 0.82)	.0124

Supplementary Table 3. Primers and probes used for gene expression analyses

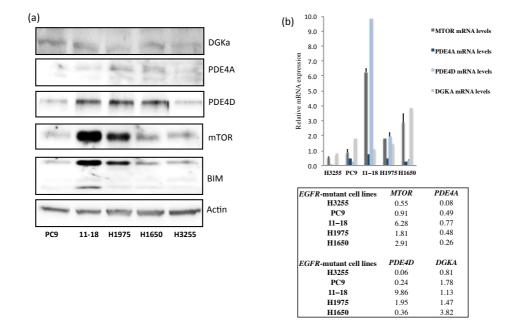
GENES	REFSEQ		PRIMERS	PROBES	
β-actin NM_001101.3		F	5′ TGAGCGCGGCTACAGCTT 3′		
	NM_001101.3	R	5' TCCTTAATGTCACGCACGATTT 3'	6FAM 5'ACCACCACGGCCGAGCGG 3' TAMRA	
MTOR NM_004958	NM 004058	F	5' AGGCCGCATTGTCTCTATCAA 3'	6FAM 5' TGCAATCCAGCTGTTTG 3' MGB	
	1111_004936	R R	5'GCAGTAAATGCAGGTAGTCATCCA 3'	OFAM 5 TOCAATCCAGCTOTTTO 5 MOB	
DGKA NM_001345	NM 001245	F	5' CCCAGTGATTTTGCCCAGC 3'	6FAM 5' AATACTCCACCAAAAAG 3' MGB	
	R	5' CCATCCTCGAAGAGCTTTAGGA3'	OFAM 5 AATACTCCACCAAAAAO 5 MOB		
PDE4A	NM_001111307	NM 001111207	F	5' GGAGACCATGCAGACCTATCG 3'	6FAM 5' TGGCCTCGCACAAGT 3' MGB
		R	5' GCTCACGGTTCAACATCCTTTT3'	OFAM 3 TOGCCTCGCACAAGT 3 MGB	
PDE4D	NM_001104631 F	F	5' ATCATCCTGGTGTGTCCAATCA 3'	6FAM 5' TCTGATCAATACAAACTCT 3' MGB	
		R	5' GGAATCATTGTACATCAAGGCAAGT3'	OFAM 5 TETGATEAATACAAACTET 5 MGB	

Supplementary Figures:


Supplementary Figure 1:

Examples of immunohistochemical analysis and correlation between mRNA and protein expression. (a). Left: Representative cases of BIM protein expression. BIM staining was considered positive when either strong (3+) or moderate (+2) cytoplasmic staining was observed (scale bar 100μm). Representative IHC staining images for a negative case (score 0; Sc 0) and a positive case (score 2-3+ in 85% of the cells; Sc 2-3+). Right: The correlation between BIM protein and mRNA

expression is presented by box- and -whisker plots. Medians, interquartile, maximum and minimum are shown. Though not statistically significant a trend for a positive correlation was found between *BIM* mRNA and protein expression (Wilcoxon test two-side *P* value =.1161). **(b).** Representative cases of P-S6 protein expression with anti-p-S6 (Ser240/244). P-S6 staining was considered positive when only strong (3+) cytoplasmic staining was observed (scale bar 100μm). Representative IHC staining images for a negative case (score 0; Sc 0) and a positive case (score 3+ in 80% of the cells; Sc 3+). Right: The correlation between P-S6 protein and *MTOR* mRNA expression is presented by box- and -whisker plots. Medians, interquartile, maximum and minimum are shown. Though not statistically significant a trend for a positive correlation was found between *MTOR* mRNA and P-S6 protein expression (Wilcoxon test two-side *P* value = .4048).


Supplementary Figure 2:

Overall survival, according to *BIM* and *MTOR* mRNA expression levels for the training cohort of patients form the EURTAC study. (a). Overall survival according to *BIM* mRNA levels for all the 57 *EGFR*-mutant NSCLC patients included in the present analysis. OS was 40.1 months (95%CI 14.6-63.0) for the 36 patients with high *BIM* (red line) and 17.7 months (95%CI 13.2-26.8) for the 18 patients with low/intermediate *BIM* mRNA expression (blue line); *P*=.010. (b). Overall survival by *BIM* and *MTOR* mRNA levels for the 46 *EGFR*-mutant NSCLC patients of the

training cohort in whom both *BIM* and *MTOR* mRNA evaluation was possible. Median OS was 17.7 (95%CI 13.3-30), for 19 patients (G1) with low/intermediate both *BIM* and *MTOR* and 25.1 months (95%CI 1.6-36.2) for the 13 patients (G2) with low/intermediate *BIM* and high *MTOR*. Median OS was 40.1 months (95%CI 8.6-NR) for 11 patients (G3) with high *BIM* and low/intermediate *MTOR* and 20.3 months (95%CI 18.1-22.5) for three patients (G4) with high both *BIM* and *MTOR*; *P*=.2497. Note Supplementary Figure 2: *BIM* expression levels were divided into high (>2.96) and low (<1.83) or intermediate (1.83-2.96). *MTOR* expression levels were divided into high (>1.97) and low (<0.91) or intermediate (0.91-1.97).

Supplementary Figure 3:

Correlation of MTOR expression with the expression of DGKA and PDE4. (a). mTOR and DGKa, PDE4A and PDE4D expression in *EGFR*-mutant lung adenocarcinoma cell lines. Cell lysates were collected and probed with anti-mTOR and anti-DGKa, anti-PDE4A anti-PDE4D antibodies. Actin was used as the loading control. The protein levels of PDE4D and mTOR are similarly increased in 11-18, H1975 and H1650 cells. (b). *MTOR*, *DGKA*, *PDE4A* and *PDE4D* mRNA expression in *EGFR*-mutant lung adenocarcinoma cell lines by qRT-PCR normalized to β-actin. Correlation between the four biomarkers was assessed using Pearson's correlation analysis. There was a significant positive correlation between *MTOR* and *PDE4D* mRNA expression (r=0.92, *P*=.0244). Pearson correlation coefficients (r) of 0.75 (P=.1418) and 0.05 (P=.09413) were found between *MTOR* and *PDE4A* and *MTOR* and *DGKA*, respectively. Values are the mean± standard deviation of triplicate experiments. Error bars indicate the standard deviation.